منابع مشابه
Genetics-Based Machine Learning
This is a survey of the field of Genetics-based Machine Learning (GBML): the application of evolutionary algorithms to machine learning. We assume readers are familiar with evolutionary algorithms and their application to optimisation problems, but not necessarily with machine learning. We briefly outline the scope of machine learning, introduce the more specific area of supervised learning, co...
متن کاملA hybrid model based on machine learning and genetic algorithm for detecting fraud in financial statements
Financial statement fraud has increasingly become a serious problem for business, government, and investors. In fact, this threatens the reliability of capital markets, corporate heads, and even the audit profession. Auditors in particular face their apparent inability to detect large-scale fraud, and there are various ways to identify this problem. In order to identify this problem, the majori...
متن کاملMachine Learning Based Profile Driven Scheduling Algorithm
Clusters of commodity servers are increasingly the platform of choice for running computationally and IO intensive jobs in a variety of industries. It is expected that using clusters will reduce the average job response time. But improper submission of jobs to clusters may lead to two problems, first it leads to blocking of jobs (waiting for results from other jobs) second it leads to disturbin...
متن کاملMultiple Species Weighted Voting - A Genetics-Based Machine Learning System
Multiple Species Weighted Voting (MSWV) is a genetics-based machine learning (GBML) system with relatively few parameters that combines N two-class classifiers into an N -class classifier. MSWV uses two levels of speciation, one manual (a separate species is assigned to each two-class classifier) and one automatic, to reduce the size of the search space and also increase the accuracy of the dec...
متن کاملThree-objective genetics-based machine learning for linguistic rule extraction
This paper shows how a small number of linguistically interpretable fuzzy rules can be extracted from numerical data for high-dimensional pattern classi®cation problems. One diculty in the handling of high-dimensional problems by fuzzy rule-based systems is the exponential increase in the number of fuzzy rules with the number of input variables. Another diculty is the deterioration in the com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEJ Transactions on Electronics, Information and Systems
سال: 1999
ISSN: 0385-4221,1348-8155
DOI: 10.1541/ieejeiss1987.119.8-9_925